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Abstract

A swarm of autonomous flying robots is implemented in simulation to cooperatively gather situational awareness
data during the first few hours after a major natural disaster. In computer simulations, the swarm is successful in
locating over 90% of survivors in less than an hour. The swarm is controlled by new sets of reactive behaviors
which are presented and evaluated. The reactive behaviors integrate collision avoidance, battery recharge, formation
control, altitude maintenance, and a variety of search methods to optimize the coverage area of camera and heart-
beat locator sensors mounted on the robots. The behaviors are implemented in simulation on swarms of sizes from
1 to 20 robots. The simulation uses actual location data, including post-disaster satellite imagery, real locations of
damaged and inundated buildings, and realistic victim locations based on personal interviews and accounts. The
results demonstrate the value of using behavior-based swarming algorithms to control autonomous unmanned aerial
vehicles for post-disaster search and assessment. Three examples of algorithms that have been effective in simulation
are presented.

Keywords: Algorithm design behavior-based artificial intelligence, Disaster recovery, Drone swarms, Multi-robot
systems, Post-disaster assessment, Rescue robots, Search and rescue, Swarm intelligence, Unmanned autonomous
vehicles

Introduction
WITH little warning, a powerful earthquake shatters the
quiet calm of a coastal city, followed shortly by the peri-
odic waves of a brutal tsunami strike. Within minutes,
local rescue workers rush to disaster sites, where they
are greeted with a morass of broken buildings, piled
cars, and splintered debris. Where once streets and fields
stretched peacefully, now sit water-inundated lagoons
filled with hazardous material. Mobility is extremely lim-
ited. Conditions are harsh; it is cold, night is soon to fall,
and it is starting to snow. There are debris everywhere;
it is hard to even walk.
The workers pull their truck up to a roadblock of

over-turned cars. Only a half dozen workers have made
it to the site so far. But people are in the water, trapped

in cars, trapped in buildings, and there is no time to
wait. The rescue workers pull small, cheap quadcopter
unmanned aerial vehicles (UAVs) out from the back of
their truck. The workers are already cold and wet, think-
ing about finding casualties, and preparing equipment.
They just want to know where to find people, but how
can they find anyone in this devastation?
Fumbling with the UAVs, wearing fireman’s gloves,

they manage to start flipping the UAVs on. They pause
for a moment, trying to remember how to make the
things work. But, they do not have to remember. As
soon as they are turned on, the UAVs immediately
launch and begin their search automatically. Remember-
ing the apps on their mobile phones, the workers open
up their “UAV Search” applications. Immediately, an
overhead picture of the scenario appears on a map on
their phones – it’s the camera feed from the first UAV.
While two of the workers are looking at their phones,

a third and fourth are flipping on more UAVs. Three of
the UAVs do not even turn on. They must have been
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damaged somehow. But it does not matter, seven were
able to launch. One by one the UAVs fly up into the sky,
flock together, and begin a systematic, targeted search of
the inundated regions. At first, workers can only see the
camera feeds from each of the UAVs. Able to see several
feeds on their screen at once, the workers start look up
to see where people are. Motion catches their eyes -
there, in the top of the parking garage – a group of 12,
waving their hands. The workers radio in for a helicop-
ter, targeting the garage.
Then, among the swarm of cheaper UAVs, a

better-equipped one is launched. Then another. Sud-
denly, on the screen, red dots appear. From the “UAV
Search” app, a list of locations appears on the left side,
organized from highest to lowest probability of a find, by
number of people. As the UAVs continue their search,
more and more locations are added. The UAVs move in
and out of formation as they locate survivors. One
worker clicks on the top find. A snapshot of the camera
feed at the time of the find is displayed, along with an
arrow pointing from the launch site to the location, and
a distance measurement. Immediately, the workers know
which direction to go, how far to go, and what the site
looks like from the air. Seeing that the location is fallen
building with no visible signs of a survivor, two rescue
workers immediately set out in that direction, knowing
the survivor is likely buried in the rubble.
The vignette above is a fictional “what-if” scenario

based on real accounts of the 2011 Great Eastern Japan
Earthquake and Tsunami (Editorial Office of the Ishino-
maki Kahoku 2014). The purpose of the vignette is to
share a vision of what could be a significant improve-
ment to post-disaster search and rescue efforts by lever-
aging teams of autonomous flying robots.
Many sources indicate that the first 72 h of a rescue

operation is the most critical (Erdelj et al. 2017) (Tait
Communications 2012), though some studies reduce this
window to 48 or even 24 h (Bartels et al. n.d.). Accord-
ing to analyses of the 2011 Tōhoku tsunami in Japan,
the first 24 h was the most critical (Editorial Office of
the Ishinomaki Kahoku 2014). Studies across more than
1000 SAR missions show a survival rate dropping expo-
nentially during the first 18 h after the onset of SAR ef-
forts, dropping to a survival rate that levels off near 0%
after 20 h (Adams et al. 2007).
Despite data showing that a concentrated effort to res-

cue trapped persons during the first few hours after a
disaster would likely yield greater effect than any effort
made later (Alley 1992) (Macintyre et al. 2006), these ef-
forts are significantly hampered by lack of situational
awareness (Editorial Office of the Ishinomaki Kahoku
2014) (Ochoa and Santos 2015) (Shimanski 2005). In-
deed, the lack of situational awareness within this critical
time frame is one of the most significant problems

immediately following a natural disaster (Ochoa and
Santos 2015) (Shimanski 2005) (Riley and Endsley 2004).
Aid workers cannot rescue survivors if they do not know
where survivors are.
Situational awareness, in this context, is the degree to

which aid workers are aware of the state of the disaster
environment. This state may include locations of survi-
vors, wreckage, roads, weather, water and other hazards,
or any other environmental factor that might affect the
rescue effort. Situational awareness has been studied and
applied in many different military, civil, commercial, and
aerospace applications over the past several decades.
Emergency services focus on situational awareness as a
key factor in reducing risk and increasing safety, especially
in disaster search and rescue situations (Shimanski 2005).
Rescue efforts are further hindered by lack of a

trained, standing force of aid workers capable of hand-
ling the often-huge workload after a major disaster
(Alley 1992). This is a challenging problem, as the logis-
tical difficulties inherent to maintaining a highly trained
standing workforce capable of handling mass-casualty
natural disasters are numerous. The approach described
in this article directly addresses these issues and, in par-
ticular, the situational awareness problem within the
critical 20–24-h time frame using an automated, tech-
nical solution.
This article presents an approach to disaster search

and rescue, data acquisition, and other types of
post-disaster assessment using one or multiple heteroge-
neous autonomous UAVs. The robots work cooperatively
as a swarm while controlled by behavior-based artificial
intelligence (also called reactive AI). This research com-
bines behavior-based artificial intelligence, swarm
intelligence, pattern search theory, and existing disaster
data into a theory of improved search and rescue
through the use of autonomous flying robots, also called
drones, Unmanned Aerial Vehicles (UAV), or Un-
manned Aerial Systems (UAS).
Simulation results generated during the research show

the approach described in this article to be both effective
and time-efficient. The data show that a swarm of just
five UAVs with standard parameters1 equipped with the
software and algorithms developed in this research can
consistently achieve a 90% standard sensor coverage
rate2 over a 2 km2 area in under 90 min, reaching nearly
99% coverage rate in under 2 h when operating in envi-
ronments modeled after real tsunami disaster locations.
The research shows that it is possible to search a wide
range of area in a short time using a swarm of low-cost
UAVs. The area can be searched continuously even if
one or multiple UAVs in the swarm fail or crash. The
swarm requires minimal operator input, freeing up res-
cue workers for other tasks. Performance using this
method, measured as sensor coverage at a certain range
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over time, is improved compared to existing methods.
Ultimately, this approach allows more data to be ac-
quired faster, with less effort, than existing methods.
Actual data regarding the time it takes rescue workers

to thoroughly search an area of 2 km2 after a disaster
without the use of UAVs varies greatly and is difficult to
quantify. Moreover, it is impossible to say how many
non-surviving victims may have survived, had they been
found sooner. However, interviews suggest it can take
days to search the most significantly affected areas (Edi-
torial Office of the Ishinomaki Kahoku 2014). Although
the use of individual, separately controlled UAVs is cer-
tainly an improvement over no use of UAVs, separately
controlled UAVs require constant operator involvement
and can still take many hours to achieve a high level of
sensor coverage. Therefore, although direct quantitative
comparison to existing methods is difficult to make,
qualitative assessment supports the conclusion that the
approach described in this article is likely to improve ac-
cess to post-disaster assessment data by a significant
margin over existing methods. Whether existing
methods take 6 h, 12 h, or 3 days to cover 90% of the
disaster area, the 1.5-h benchmark achieved by the
five-UAV swarm in our simulation is significantly faster
than any of these measures.

Background
The emergence of complex traits and behaviors from in-
terconnected sets of individual parts is a well-researched
and documented phenomenon (Arnold and Wade 2015)
(Koffka 1922) (Wiener 1948). The use of this phenomenon
to create decentralized artificial intelligence (AI) in the
control of robots was thoroughly described by Brooks
(Brooks 1999). Brooks approaches artificial intelligence
from the “bottom-up” by investigating the emergent intel-
ligent patterns of robots equipped with individual, simple
behaviors. These robots do not possess centralized con-
trol; rather, they react to stimuli (in the form of sensor in-
put) in a variety of relatively simple ways. From these
simple interactions, intelligent behavior emerges. This ap-
proach is known as behavior-based artificial intelligence.
In behavior-based AI, a robot’s intelligence is based on a
set of relatively simple, independent behaviors, rather than
on a centralized control unit.
Brooks implements behavior-based artificial intelligence

theory using an architecture he calls the “subsumption
architecture.” In his work, robots’ behaviors “subsume”
each other depending on the results of a variety of inputs,
such as sonar and pressure sensor data. Only one behavior
will be active at any given time. The active behavior varies
based on sensor data. Brooks successfully implemented
this architecture on a variety of applications requiring arti-
ficial intelligence, such as navigation and motor control
(Brooks 1999). The subsumption architecture can be

considered one implementation of behavior-based artifi-
cial intelligence, which is itself a broader concept.
The behavior-based approach was applied to research

on swarm intelligence by Kennedy and Eberhart (Kennedy
et al. 2001). Swarm intelligence is the resultant intelligent
behavior of groups of independent heterogeneous entities
behaving as a single system, such as a flock of birds,
swarm of ants, or a hive of bees. Individually, the entities
in the swarm may not have an understanding of the work-
ings of the system as a whole. There may not be a single
focal point of control over the swarm. However, in some
way, the swarm still manages to work together as a single
system to accomplish a goal. An ant swarm finds food
sources, gathers food, and even builds complex structures
at times. A flock of birds avoids predators and successfully
migrates. Bees gather nectar for the hive over a wide range
of conditions and environments. Theories of behavior-
based, or reactive, intelligence apply to these swarms of
entities. Swarms often function in an intelligent manner
through the reactive behaviors implemented by their en-
tities. Through the reactive behaviors of many individual
entities, intelligence emerges (Kennedy et al. 2001).
Behavior-based formation control was applied to groups

of robots by Balch and Arkin (Balch and Arkin 1998).
They successfully integrated formation behaviors with
navigation and hazard avoidance both in simulation and
on a set of land-based ground vehicles. The robots’ speeds
and turn directions were influenced through a system of
votes based on sensory inputs and communication be-
tween robots in the group. Several other related papers on
formation control for groups of robots were published
around the same time frame (Balch and Arkin 1998).
Virágh and Vásárhelyi applied principles of flocking

behavior to UAVs (Virágh et al. 2014) (Vásárhelyi et al.
2014). Virágh applied agent-based models to the control
of flocks of UAVs, incorporating principles of time delay
in communication as well as inaccuracy of onboard sen-
sors. Two decentralized algorithms are proposed in their
research: one based on the collective motion of a flock,
the other based on collective target tracking. A principle
of their research is to use a realistic simulation frame-
work to study the group behavior of autonomous robots.
Swarm algorithms for controlling groups of UAVs are

also under exploration for defense systems by the US
Department of Defense (Frelinger et al. 1998). Their pur-
poses range from combat search and rescue to ballistic
missile defeat, in which many of the fundamental tech-
niques used for targeting in defense systems are similar
in principle to disaster search and rescue. In both
scenarios, swarms of UAVs build upon cooperative
behavior-based intelligence to efficiently locate one more
multiple targets.
A team from the Naval Postgraduate School designed

a swarm control framework called the Service Academy
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Swarm Challenge (SASC) architecture. The SASC archi-
tecture is used to control swarms of heterogeneous ro-
bots using the C++ and Python programming languages.
SASC has undergone successful field tests deployed on
swarms of fixed-wing and quadrotor UAVs.
Additionally, a programming language called Buzz has

been specifically designed to facilitate heterogeneous
swarm robotics (Pinciroli and Beltrame 2016). Buzz al-
lows behaviors to be defined from the perspective of a
single robot or from the overall swarm. This program-
ming language is capable of running on top of other
frameworks and can be extended to add new types of
robots.
For the purpose of disaster search and rescue,

behavior-based control of land-based robots was imple-
mented in the HELIOS system (Guarnieri et al. 2009).
The HELIOS system consists of five land-based, tracked
robots used for urban search and rescue. Two of the ro-
bots are equipped with manipulators to perform physical
tasks, and the other three are equipped with cameras
and laser range finders and are utilized to create virtual
maps of the environment. The robots can be used separ-
ately or as a team for more complex missions. The three
robots equipped with laser range finders can move
autonomously in unknown environments using a collab-
orative positioning system. The system as a whole re-
quires control by a human operator.
The use of unmanned aerial systems in search and res-

cue is an area of high interest (Erdelj et al. 2017) (Molina
et al. 2012) under consideration by a number of high
profile organizations, including the American Red Cross,
NASA, and the Japanese Ministry of Defense (American
Red Cross 2015). Many efforts in this area have included
the use of individually piloted UAVs, rather than autono-
mous swarms of robots (Erdelj et al. 2017). For example,
the European CLOSE-SEARCH project includes the de-
ployment of a single UAV with a ground-based control
station to locate someone lost outdoors (Molina et al.
2012). The value of UAVs for information-gathering and
situational awareness acquisition has been expressed by
a number of sources (Erdelj et al. 2017) (Molina et al.
2012) (American Red Cross 2015). Researchers at Carne-
gie Mellon are investigating the use of swarms of tiny
UAVs to map the interiors of buildings after disasters
(Williams 2015). However, research into the use of
swarms of autonomous UAVs to aid in locating survivors
during exterior search and rescue appears to be minimal.
Although UAVs and Unmanned Ground Vehicles

(UGVs) are already in use for disaster search and rescue
(Erdelj et al. 2017) (Molina et al. 2012) (American Red
Cross 2015), the use of swarms of UAVs optimized to au-
tonomously cover a disaster area, streaming useful data to
operators and each other while avoiding collisions, weav-
ing over and around obstacles, and returning to charge

batteries, has been largely absent. This absence seems to
be due to a combination of air traffic regulations, laws
restricting the use of UAVs, and technical limitations
which, until recently, have been difficult to overcome.
Due to these challenges, the control of autonomous

swarms of UAVs is a relatively new phenomenon. The
Naval Post-Graduate School in Monterey, California,
flew a swarm of 50 UAVs controlled by a single operator
in 2015 as part of their Zephyr system. At the time, this
event is believed to have set the world record for the
most UAVs under single operator control (Hambling,
2015). The use of swarms of UAVs to aid in post-disaster
assessment was imagined in 2016, in a report describing
a human-machine interface to control the UAV swarm.
The Orchid disaster response system under develop-

ment by the UK appears to be the closest to the ap-
proach described in this article (Ramchurn et al. 2016).
It uses decentralized control of a swarm of UAVs to en-
hance disaster rescue efforts. The Orchid system is de-
signed to interpret crowd-sourced data, building a
picture of a situation and providing recommendations
for resource allocation. In contrast, this article describes
behavior sets and algorithms used to control UAVs to
maximize sensor coverage over areas of land and water.
This article also presents the results of simulated time
trials using swarms of UAVs. The UAVs are controlled
by three different behavior sets to search a realistically
designed post-disaster location. Data of this particular
nature does not appear to be present in the literature.
Distributed coordination is key to enhancing the scope

and level of detail of post-disaster assessment. By distrib-
uting the workload among many units, the amount of
work and the time it takes to do the work is significantly
reduced. This also allows scaling the system to larger or
smaller areas by simply adding or subtracting units from
the swarm. Controlling these individual units through
behavior-based artificial intelligence allows them to react
successfully to a variety of challenging, changing
situations with minimal or no operator input. The
behavior-based method of robot control has been a
staple of robotics for the last several decades and has a
proven track record of success.
Recent technological developments have made modern

UAVs more capable and cost-effective, enabling the use
of coordinated swarms at reasonable cost.3 UAVs can be
equipped with built-in hover and maneuver capabilities
as well as high definition (HD) and/or infrared (IR) cam-
eras, wireless capabilities to stream live data, and the
ability to carry small payloads or additional sensors. This
combination of traits has now enabled the practical use
of swarms of small, cost-effective UAVs for post-disaster
assessment. In order to propel these efforts forward, it is
important to demonstrate the significant time-saving ef-
fects that the use of such swarms can produce in
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post-disaster situations. Furthermore, developing and
assessing different algorithms to control the swarm as a
single, distributed system while also maintaining the in-
dividual capability of each separate unit in the swarm is
key to the success of this type of system on the whole.
The research described in this article applies the con-

cepts of behavior-based and swarm-based intelligence to
control groups of UAVs to locate survivors in disaster
search and rescue scenarios. By using data gathered from
town records, in-person interviews, survey data, and site
visits, several scenarios were built out that depict the
post-tsunami environment in 2011 Sendai City, Japan,
with a large degree of accuracy. The heights and place-
ment of structures are accurate, and the locations and
behaviors of survivors within the scenario are based on
real accounts (Editorial Office of the Ishinomaki Kahoku
2014) (Municipal Development Policy Bureau 2017)
(Post-Disaster Reconstruction Bureau 2015) (Sato 2015)
(The Center for Remembering 3.11 2015) (Tohoku Re-
gional Development Association n.d.).
The algorithms used in this research allow the UAVs

to dynamically respond to changes in the environment,
as well as unknown scenarios and unforeseen circum-
stances. For example, sensors can malfunction and the
UAVs will still retain some measure of utility. A building
can be “dropped” in front of a UAV in the simulation,
and the UAV will successfully navigate around or over
the building, then continue its task.
A dynamically changing environment is a key part of a

disaster scenario. Unless injured or safe, survivors do
not often stay still. People move to higher floors in
buildings. They move towards lights, sounds, higher
ground, helicopters, and safety (Editorial Office of the
Ishinomaki Kahoku 2014). The weather gets cold, it may
start to snow or rain, and the sun may go down (Editor-
ial Office of the Ishinomaki Kahoku 2014). Night falls,
day breaks, visibility changes. Any rescue approach
needs to have the flexibility to accommodate these dy-
namic changes and respond to unknown environments.
Our approach demonstrates this flexibility.

Hypothesis
A swarm of standard, commercially available autono-
mous UAVs controlled by behavior-based, cooperative
artificial intelligence software may significantly improve
the data set containing known victim locations during
disaster search and rescue efforts with minimal operator
input required. For the purposes of this research, several
requirements are imposed on the algorithm sets used to
achieve this hypothesis. The intent of these requirements
is to provide a practical, flexible system:

� Performance—Gather more data faster

� Achieve a simulated standard sensor coverage (30 m
range) of 90% across 2 km2 within 24 h.

� Achieve a simulated precise sensor coverage (15 m
range) of 90% across 2 km2 within 24 h using a
simulated, miniaturized FINDER sensor.4

� Scalability—Support any number of robots
� Supports an arbitrary number of UAVs in the

swarm. Due to computational limits during
simulation executions, a maximum of 20 of UAVs
was used in this research.

� Heterogeneity—Support mixed groups of robots and
sensor configurations

� Different capabilities and sensor configurations
supported within the same swarm.

� Different UAV types and models supported within
the same swarm.

Approach
Behavior-based artificial intelligence
Behavior-based artificial intelligence is the concept that
intelligence can emerge through the interactions of sim-
ple, individual behaviors lacking centralized control.
Combining several well-defined but separate behaviors
can result in the emergence of intelligent systemic be-
havior. When used in software and robotics, this ap-
proach can provide a high level of robustness, as failed
behaviors can be ignored while default behaviors are ac-
tivated (Brooks 1999). The division of logic between be-
havior modules can allow the system to scale to a high
level of complexity without imposing an unmanageable
cognitive load on software developers.
Although there are many ways to design robust systems,

systems designed with a behavior-based approach to AI
are well-suited to reacting to environments dynamically
based on sensor inputs without prior knowledge (Brooks
1999). These properties are highly desirable in a
post-disaster assessment system operating in a volatile en-
vironment where the failure of individual parts of a system
may be common due to hazardous external factors.

Proposed technique
To enhance post-disaster assessment, search and rescue,
and information gathering, we propose using a tech-
nique that combines behavior-based artificial intelligence
with cooperative swarm behavior. Individual units of a
swarm equipped with behavior-based AI are well-suited
to perform cooperative tasks (Kennedy et al. 2001), as
the results of their own behaviors combine together to
emerge as individual unit behaviors, and these unit be-
haviors combine together to emerge as collective swarm
intelligence (systemic behavior).
We implement behavior-based AI and cooperative be-

havior in a simulated swarm of UAVs to search for disaster
survivors in a post-disaster environment. We measure the
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effectiveness of the approach by recording the detection
rates over time of the survivors by the swarm. Our goal is
to reach a 90% detection rate in under 24 h in simulation.
This approach can be applied to any sort of informa-

tion gathering and is not limited to just search and res-
cue. However, using search and rescue gives a direct,
tangible way to understand the benefits and effectiveness
of the approach.

Proposed algorithms and control methods
To enhance survivor detection through the use of UAV
swarms, several control methods are considered (Fig. 1).
These methods are all implementations of behavior-
based AI. Each control method, also referred to as a
method or an algorithm, is simply a set of ordered be-
haviors conceived of and developed during the research.
The order of the behaviors within each method is critical
as it determines the priority level at which they are exe-
cuted. As behaviors can be grouped and ordered in
many different ways, it is important to figure out which
set of behaviors, and in which order, is most effective.
The three sets of behaviors (methods) were selected
based on the anticipated effectiveness of each set of be-
haviors as determined by the researchers.

� Standard method—UAVs all follow the same
pattern.

� Spiral method—Upon locating a “critical mass”
concentration of survivors, a single UAV moves
outward in a spiral pattern, then returns to previous
search method.

� Scatter method—Each UAV simultaneously moves
to a different location in the search pattern.

The behaviors in the behavior-based software architec-
ture used in this research are all original and were con-
ceived of and created by the researchers. They are
implemented as separate, named, plug-and-play software
modules. Each of the three control methods consists of
some subset of the following 12 behavior modules.
These modules are described in detail in the “Method
implementation” section and briefly here:

1. Launch—Take off from a stationary position
2. Avoid—Avoid collisions with buildings and

obstacles
3. Climb—Climb over obstacles
4. Recharge—Recharge batteries
5. Height—Maintain a certain height above the

ground, buildings, or large objects
6. Spiral—Move out in an expanding spiral
7. Form—Maintain distance between other UAVs
8. Repel—Move away from other UAVs when too

close
9. Seek—Move directly to a specified GPS location
10. Waypoint—Move towards a preset pattern of

waypoints
11. Scatter—Move individually towards an unallocated

waypoint among a set
12. Wander—Choose a random location and move

towards it

These behaviors were conceived based on deductive rea-
soning, literature search (Brooks 1999) (Kennedy et al.
2001), and extensive trial and error in simulation. Each be-
havior is assigned a priority. The UAV control software ar-
ranges priorities by the order the behavior modules are
loaded into the software. Earlier behaviors, when trig-
gered, prevent later behaviors from occurring at the same
time. That is to say, if the avoid behavior is active at a
given time, no behaviors at a lower priority than avoid in
the list will be activated (such as height or recharge). A
given time in this situation refers to a given tick in the
software, which is approximately 15–16 ms. This measure
is consistent with the duration of a tick used in personal
computers running Microsoft Windows, Apple macOS, or
Linux, and mobile operating systems used in UAVs such
as the Google Android operating system and iOS.
The UAV re-checks its sensor input at a rate of

roughly 60 Hz (or 60 frames per second), or every
16 ms; thus, reactions that result in the activation of dif-
ferent behaviors occur quickly and often blend together
in the eye of the watcher to seem integrated. Perhaps,
this type of behavior is even at the core of evolved
intelligence (Brooks 1999) (Kennedy et al. 2001).

Fig. 1 UAV search methods. Actual patterns are more complex; the patterns depicted here are simplified for clarity. Blue dots are UAVs, gray areas are
destination targets, and red triangle is a concentration of survivors. From left to right: standard, spiral, and scatter
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The order of behaviors is critically important to the
overall operation of the system. For example, if the
height behavior was prioritized over the recharge behav-
ior, the robot would never be able to charge its batteries.
Every time it tried to land at the battery charging station,
the height module would make it climb again! If the
avoid behavior was ordered below seek, the robot would
run into obstacles and likely crash while moving to its
destination. Thus, the emergent intelligence of these ro-
bots is a product of the careful, simultaneous consider-
ation of both wholes and parts (Arnold and Wade 2015).
The desired result emerges from the determination of
what each behavior should do in the context of the
others and how the behaviors are correctly prioritized as
a whole system.
A major advantage to this approach is flexibility in the

software; in the software designed for this research, be-
havior modules can be coded and inserted by outside
parties. A simple configuration file determines their load
order (priority), and they can be added to the system by
simply placing the compiled behavior module in the Be-
haviors folder on the host computer’s hard drive. In this
way, the simulation system is extremely flexible in that it
allows testing of all sorts of behaviors and orders with-
out requiring any changes to the base system.

Method implementation
The details of each of the behaviors and control methods
are explained in this section. It is important to note that
UAVs are continuously broadcasting their own locations
over a wireless network and receiving and processing
the locations of other UAVs.
Launch—Take off from a stationary position
Activation: Robot is not flying, is within 10 m of de-

ployment location, and has at least 99% battery life.
Actions:

� Begin ascending. Note that nothing more is needed;
once the robot is flying, the height module will take
over and bring it to the correct altitude.

Results: Robot will ascend from a previously landed
position.
Avoid—Avoid collisions with buildings and obstacles
Activation: Potential collision detected based on speed,

angle of movement, acceleration, and location of nearby
objects as reported by sonar sensor.
Actions:

� If moving faster than acceleration rate, decelerate.
� If moving slower than acceleration rate, accelerate

full speed at a 200° angle from current heading.
This essentially turns the robot in the opposite
direction of the imminent collision, at a slight 20°

angle difference. The 20° angle difference prevents
the robot from moving straight backwards, and
then forwards again into the same situation as the
previously executed behavior takes over.

� If, after 12 s, robot is still within 2 m of the
original location, change the deflection degrees
from 200 to 160 (20° angle on the other side of
the opposite.

Results: Robots will “bounce around” objects in their
way.
Climb—Climb over obstacles
Activation: An obstacle is closer than 5 m as detected

by sonar sensor.
Actions:

� Accelerate upwards at maximum acceleration, until
obstacle is not detected horizontally to robot.

� Stabilize horizontal movement during upwards
acceleration.

Results: As a robot nears an obstacle, it will ascend up
over the obstacle, where the height module then takes
over and brings the robot to the appropriate height
above the obstacle.
Recharge—Recharge batteries
Activation: Less than 5 min of battery life left.
Actions:

� Move directly to deployment location at 75% of
maximum speed.

� If within 3 m of deployment location, reduce speed
until stabilized, then land.

Results: When a robot’s battery becomes low, it
flies directly back to the deployment location and
lands.
Height—Maintain a certain height above the ground or

large objects
Activation: Closest object below robot is six or more

meters away or four or less meters away.
Actions:

� If closest object is six or more meters away, descend
at maximum acceleration.

� If closest object is four or less meters away, ascend
at maximum acceleration.

Results: Robots tend to maintain the desired height
above objects below them.
Spiral—Move outwards in an expanding spiral
Activation: Four or more survivors detected within a

10-m radius of each other.
Actions:
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� Move in an expanding spiral from the center point of
the located survivors until reaching a 100-m radius.

Results: This behavior can be equated to the “expand-
ing square” visual search pattern (Washington State De-
partment of Transportation 1997) but is implemented as
an expanding circle instead of a square. When the UAV
detects a concentrated group of survivors, it begins to
spiral outwards from the center location of the survivors.
As survivors often congregate in larger groups and move
towards groups, it is theorized that this behavior will
lead to the discovery of additional survivors that may
not have been able to reach the detected group.
Form—Maintain 50 m ± 5 m distance between other

robots
Activation: Closest robot is either within 45 m or more

than 55 m away.
Actions:

� If within 45 m, accelerate in opposite direction of
closest robot at maximum acceleration rate.

� If more than 55 m away, accelerate towards closest
robot at maximum acceleration rate.

Results: This is a type of flocking behavior (Kennedy et al.
2001). Robots tend to group up together and stick together
in large groups. Small groups can split off, but as they move
near each other, they tend to re-engage the larger group.
Repel—Stay at least 10 m away from other robots
Activation: Closest robot is within 10 m.
Actions:

� Accelerate in opposite direction of closest robot at
maximum acceleration rate.

Results: This behavior prevents robots from moving
too close to each other in the absence of a flocking be-
havior such as form.
Seek—Move directly to specified GPS location
Activation: Seek location specified, and robot is more

than 10 m away.
Actions:

� Accelerate towards specified location at maximum
acceleration rate.

Results: Robots can be ordered to move directly to
specific locations.
Waypoint—Move towards a preset pattern of waypoints
Activation: Set of search waypoints exists.
Actions:

� Accelerate at maximum rate towards current
waypoint.

� Once waypoint is within camera detection range,
broadcast completion of waypoint over wireless
network and set next waypoint as current waypoint.

Results: As the UAVs act as a single entity, they “com-
pete” to reach the next waypoint. No single UAV is in
charge, and there is no “leader” UAV. Any UAV that
reaches the next waypoint will send a message to all
other UAVs declaring that the waypoint has been
reached. Upon receipt of this message, the UAVs will
begin to move to the next waypoint. Thus, as a single
system, the UAVs can be assigned one set of waypoints
and they will effectively explore every waypoint as a
swarm. In essence, waypoints tell the swarm to ensure
that some part of your swarm, any part, covers this way-
point. In the simulations used, UAVs communicated
their waypoint information via Wi-Fi. Thus, delays or
long distances in Wi-Fi could have an effect on the
swarm’s behavior as a whole.
The waypoint search used in this research resulted in a

version of a search called “parallel track” or “parallel
sweep” (Washington State Department of Transportation
1997) performed as a swarm. Also, when this behavior
combines with avoid, the UAVs perform a variation of the
“contour search” (Washington State Department of
Transportation 1997) because they automatically avoid
collisions. These are some of the interesting emergent
properties of the interactions between simple behaviors.
Scatter—Move towards a pre-defined search pattern

waypoint which is not already allocated to another UAV
Activation: Set of search waypoints exists.
Actions:

� Accelerate at maximum rate towards current
waypoint.

� Once waypoint is within camera detection range,
broadcast completion of waypoint over wireless
network and set next waypoint as current waypoint.
Next waypoint must not be the current waypoint of
any other UAV in the system.

Results: The swarm of UAVs scatters across the
disaster area, searching multiple different locations
simultaneously.
Wander—Choose a random location and move to-

wards it
Activation: Always. Note that this behavior is rarely

activated in a fully functioning system because it is al-
most always subsumed by some other behavior.
Actions:

� If location sensor exists and is functioning, choose a
random wander location 100 m away and accelerate
towards it at half speed.
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� If within 10 m of current wander location, choose
new location.

� If a location sensor does not exist or is
malfunctioning, set a random target heading and
proceed at half speed.

� After traveling for 1 min at current heading, change
to a different heading.

Results: This behavior is included for robustness.
Wander is a default behavior in case other behaviors
crash or fail to execute for any reason. If all else fails, a
UAV will try to wander to a new location which may
have different sensory inputs and/or different terrain, fa-
cilitating a better result.
Table 1 shows the behaviors used by each control

method. Although it may appear that these methods are
similar in that they use many of the same behaviors, not-
ably most of those behaviors are a necessary foundation
to the successful function of any higher-order robot be-
havior. A living being must eat, drink, and breathe be-
fore she can do more complex tasks. In the same way,
our UAVs must launch, avoid obstacles, and maintain
height before they search for disaster survivors. The es-
sential, method-defining behaviors are the ones included,
or left out of, each method.

Standard method
A swarm of UAVs operating the standard method behav-
ior set (Fig. 2) will launch then proceed to the first way-
point in their search pattern (Fig. 3). Along the way, they
will maintain appropriate distances between each other by
continuously broadcasting their locations over a wireless
network, avoid collisions with obstacles through maneu-
vering around or climbing over, and maintain proper
height. When the first UAV in the swarm reaches the
current waypoint location, it broadcasts this data to the
rest of the swarm. As the UAVs receive this data, they

begin moving towards the next waypoint in the search
pattern. In some cases, UAVs on the far side of the swarm
may already be close to the new waypoint. The result is
that a large swarm of UAVs may “zig-zag” between loca-
tions in a way that can be efficient, whereas a smaller
swarm of just one, two, or three UAVs may actually fly
back and forth between the waypoints. Both methods
maximize coverage area and follow the same behavior
software, though an observer will notice significant differ-
ences in the actual flight paths of the UAVs and may con-
clude (incorrectly) that they are actually using different
artificial intelligence software.
Upon a low battery indication, a UAV will break from

formation and return to its deployment location, land,
and recharge its batteries. When the recharge is

Table 1 Behaviors in each control Method

Standard Spiral Scatter

Launch ✓ ✓ ✓

Avoid ✓ ✓ ✓

Climb ✓ ✓ ✓

Recharge ✓ ✓ ✓

Height ✓ ✓ ✓

Spiral ✓

Form ✓ ✓

Repel ✓

Seek ✓ ✓ ✓

Waypoint ✓ ✓

Scatter ✓

Wander ✓ ✓ ✓

Fig. 2 Standard method behavior set

Fig. 3 Standard method showing the paths of three UAVs launched
from the blue rectangle on the center left. Red, yellow, and green
dots are survivors in different states of discovery. In this scenario,
UAVS moved in a search pattern across the area starting in the
northwest and ending in the southeast. Photograph by Geospatial
Information Authority (GSI) of Japan (Geospatial Information
Authority of Japan 2011)
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complete, the launch behavior will detect a full battery
and automatically activate. The robot will then launch
and proceed to the next waypoint, likely meeting up
with the rest of the swarm along the way.
While following this method, it is possible and likely that

robots will break into smaller groups as they recharge their
batteries and return to the field. The design and architec-
ture do not prevent or discourage this, and it is an emer-
gent result of the complex interactions of simple behaviors.

Spiral method
The spiral method uses the standard method but imple-
ments an additional behavior: spiral, which is inserted
after height and before form in the behavior priority list.
The spiral method behavior set (Fig. 4) operates

similarly to the standard method, but differs in one
significant way. While engaging in the standard method
search, when a UAV’s spiral behavior is activated
through detection of a concentration of survivors, the
UAV “breaks away” from the group and performs a
spiral maneuver out to a 100-m radius (Fig. 5). After
completing this maneuver, the robot returns to its regu-
lar formation within the group. Within the software
architecture, the only requirement to implement this
method is the insertion of the spiral behavior module in
the correct place in the behavior list. No other changes
need to be made. That such a change can be made so
simply is one of the advantages of the behavior-based
artificial intelligence paradigm.
The spiral method accounts for evidence gathered dur-

ing disaster search and rescue (Editorial Office of the
Ishinomaki Kahoku 2014) (A. E. S. M. Staff Member
2017) showing that survivors are likely to group together
following a disaster. If a few people are found together, it
is likely that more are present as well. Spiraling outwards
from the locations of the first few people found is likely
to result in the discovery of new survivors.
The distressed person density information could be

used by rescue workers in many ways, such as determin-
ing where and when to send rescue vehicles such as

helicopters or boats. Also, the spiral method may result
in the discovery of distressed persons attempting to
unite with the group, and coming close, but failing to
cover the last bit of distance due to insurmountable ob-
stacles, as happened during the 2011 tsunami (Editorial
Office of the Ishinomaki Kahoku 2014).

Scatter method
The scatter method differs from standard and spiral
methods significantly in that it sends each UAV to a dif-
ferent point in the search pattern. The waypoint behav-
ior module is removed completely and replaced with a
scatter module. Also, the form module is replaced with
the repel module.
The scatter method (Fig. 6) represents a significant diver-

sion from both the standard and spiral methods. Although
this method is still cooperative, rather than operating as

Fig. 4 Spiral method behavior set

Fig. 5 Spiral method showing the paths of three UAVs. As with
standard method, UAVs launched from the blue rectangle. Note the
circular pattern in the northeast corner as a UAV located the group
of survivors (green dots) on top of the elevated building and performed
the spiral behavior while the others continued the search. Photograph
by GSI of Japan (Geospatial Information Authority of Japan 2011)

Fig. 6 Scatter method behavior set
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single flock with all robots seeking the same point then
switching to the next when any one UAV reaches the point,
using the scatter method, each UAV has its own destination
point which is different from all the others (Fig. 7). Theoret-
ically, this allows the swarm to spread over a larger area in
shorter time.
Destinations are selected based on a staleness factor, that

is, points that have not been reached yet by the swarm as a
whole are highest priority, whereas points that have been
visited further in the past are slightly lower, and points that
have been recently visited are the lowest in priority. If one
UAV is already seeking a point, a different point is chosen.
If all points are already chosen, the UAV chooses an opti-
mal point based on staleness factor. Using this method, the
swarm of UAVs will effectively scatter across the disaster
area, searching multiple different points simultaneously.
Although in theory the scatter method might appear

to be a better option than standard or spiral methods
given that different UAVs are able to explore different
locations in parallel, in practice, a swarm of UAVs flock-
ing together significantly increases the probability of sur-
vivor detection. Sensor range is limited, and a group of
UAVs flocked together maintaining a certain distance
from each other effectively forms a large, single system
with a combined, redundant sensor range. Without
flocking, a single UAV’s sensor range is limited; there-
fore, as locations are explored separately, the search pat-
tern must necessarily be quite complex or contain a
large number of waypoints to approach the same level of
effectiveness as the other methods. In this case, a hybrid

method between scatter and spiral could be more
effective.

Performance analysis
Assumptions
While developing the simulation software used in this
research, several assumptions were made about the
UAVs:

� Programmable—The UAVs are programmable in
that they are controlled by modifiable software and
can receive commands to change speed and
direction.

� Quadcopter—UAVs are standard multirotor
helicopters lifted and propelled by four rotors.

� Stability control—UAVs have built-in stability
control that allows them to hover stably in one
location or can be easily equipped with equivalent
Commercial Off the Shelf (COTS) software to
provide this effect.

� Network unavailable—Due to loss of infrastructure
and other inherently challenging circumstances
during most disaster search and rescue situations, it
is assumed that a commercial Internet network may
not be available. The UAVs will set up their own ad
hoc network to communicate with each other. This
network is not dependent on existing network
infrastructure.

Parameters
The simulation software allows the selection of different
commonly available off-the-shelf UAVs. It also allows
UAV parameters to be customized. For the scenarios
used in this research, Table 2 shows the parameters that
were used in the simulation based on current commer-
cially available data.

Sensors and equipment
In addition to the software behavior modules, UAVs are
provided with simulated sensors and equipment values
to be customized (Table 3). Collision avoidance depends
on sonar sensors. One sonar sensor is mounted
down-facing, while the others are outward-facing from

Fig. 7 Scatter method showing the paths of three UAVs. As with
standard method, robots launched from the blue rectangle.
However, each UAV proceeded to a different location in the search
pattern, scattering them across the area. Photograph by GSI of Japan
(Geospatial Information Authority of Japan 2011)

Table 2 UAV parameters used in simulation

Parameter Value Units

Max speed: horizontal 20 Meters per second

Max speed: ascent 6 Meters per second

Max speed: descent 4 Meters per second

Acceleration 2 Seconds from 0 to max speed

Battery life 28 Minutes

These are the standard parameters of a commercially available UAV as defined
in the simulation software. Parameters referenced from https://www.dji.com/
phantom-4/info on 2017-12-20
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the left, right, forward, and rear sides of the UAV. The
sonar data is fused together to form a single sonar sen-
sor picture. Formation and flocking behavior depends on
both sonar sensors and the GPS. Communication be-
tween UAVs, and therefore cooperative swarm behavior,
depends on the Wi-Fi HD communicator. UAVs deter-
mine their own locations, and, by extension, which dir-
ection to travel to reach a waypoint, by using the GPS
sensor. The behavior modules are highly dependent on
the input from these sensors.
These sensors can be turned off or on, or “broken” in

the simulation to simulate how a UAV will behave in dif-
ferent practical situations. The range and effectiveness of
the sensors can also be adjusted. This allows the design-
ing of a robust system prior to actual deployment and
hardware testing.
The UAV’s camera is mounted in a down-facing pos-

ition on the bottom of the chassis. Although a camera
radius of just 15 m may seem small, the intent of this
range is to capture difficult environmental conditions
such as fog, snow, rain, and debris, which may interfere
with a camera’s range of vision. A 15-m radius provides
a conservative estimate that likely falls within the effect-
ive parameters of a wide range of commercially available
cameras and sensors.

Simulation scenario
The environment chosen to be simulated for this re-
search was in a town called Arahama, in Wakabayashi,
Sendai City, Miyagi Prefecture, Japan, one day after the
2011 Great Eastern Japan Earthquake and Tsunami. This
location was chosen because it was one of the hardest
hit by the tsunami, and a great deal of data were avail-
able on the town, including satellite imagery, population,
physical layout, timetable of the tsunami, search and res-
cue data, personal interviews, and locations of survivors.
Within this environment, three different patterns were
considered when setting the locations of distressed per-
sons within the simulation (Fig. 8):

� Random—Distressed persons were scattered at
random across the search area.

� Congregated—Distressed persons were concentrated
at likely rescue locations according to data from a

variety of sources. For example, schools, parking
decks, and other tall buildings contained more
survivors while low areas contained few, if any
(Editorial Office of the Ishinomaki Kahoku 2014)
(Municipal Development Policy Bureau 2017)
(Post-Disaster Reconstruction Bureau 2015)
(Tohoku Regional Development Association n.d.)
(A. E. S. M. Staff Member 2017).

� Mixed—Half of the distressed persons were
congregated and the other half random.

The mixed pattern was selected and used for our re-
search. Although the congregation pattern is based on real
data acquired at Arahama (Editorial Office of the Ishino-
maki Kahoku 2014) (Municipal Development Policy
Bureau 2017) (Post-Disaster Reconstruction Bureau 2015)
(The Center for Remembering 3.11 2015) (Tohoku Re-
gional Development Association n.d.) (A. E. S. M. Staff
Member 2017), randomly scattered survivors should not
be discounted as it could be that they were simply not
found during rescue efforts. Therefore, the mixed pattern
is the best fit for this research. Practical algorithms should
show greater effectiveness at congregation-heavy patterns
than at random patterns.
For the purpose of the simulation, satellite imagery of

the actual location was acquired (Figs. 9 and 10). Ideally,
a photo immediately following the tsunami strike would
be desirable. Unfortunately, such imagery was not avail-
able; this image was taken on March 12, 2011, the day
after the tsunami strike. Building locations were placed
according to the imagery and checked against height
data as well as cross-referenced against actual photos
and on-site interviews with local residents.

Validation of the disaster area model
The model of the disaster area was built by overlaying
structural data on the satellite photos shown above,
resulting in a high level of face validity. The heights of
the buildings were determined by on-site survey and
measurement. As time did not allow for all buildings to
be measured and some have in fact been demolished
since 2011, buildings that could not be directly mea-
sured were assigned height data based on their types, lo-
cations, and designs. For example, in a row of similar
houses, the height of a single house may have been mea-
sured and then used for all similar houses.
To accurately represent survivor distribution in the

simulation model, data from a variety of sources were
used. These data can be collated to show a pattern in
which groups of certain numbers of survivors gathered
at certain places within the town (Editorial Office of the
Ishinomaki Kahoku 2014) (Municipal Development Pol-
icy Bureau 2017) (Post-Disaster Reconstruction Bureau
2015) (The Center for Remembering 3.11 2015) (Tohoku

Table 3 Sensors and equipment used in simulation

Parameter Value Units

Battery 28 Minute life

Camera 15 Meter detection radius

FINDER sensor 5 Meter detection radius

GPS receiver 5 Meter error

Sonar sensor 20 Meter range

Wi-Fi HD communicator 805 Meter range
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Regional Development Association n.d.) (A. E. S. M.
Staff Member 2017).
As no data is available on the locations of victims lost to

the tsunami in Arahama, a random distribution pattern
was chosen to represent the remainder of the town’s popu-
lation. The mixed pattern using the real data combined
with the use of random distribution for the remaining sur-
vivors, based on the total population of the town, is consid-
ered a reasonable way to represent the survivor locations in
the simulation model based on available data.
The model was validated by comparing the locations

and heights of buildings, numbers of survivors, and con-
gregated groups of survivors to satellite photos, aerial
photos, and records obtained in Arahama detailing the
events during and immediately following the tsunami.
The resultant simulation model was used as a base for
the simulations performed during this research.

Results in simulation
Results were generated using the DroneLab Unmanned
Aerial System (UAS) simulation software sponsored by
the Japan Acquisition, Technology, and Logistics Agency’s
(ATLA) Air Systems Research Center (ASRC).5

DroneLab runs on multiple platforms, including
macOS, Unix-like operating systems, or Microsoft Win-
dows machines, using the Java environment. The simula-
tion environment is user-definable, displaying either an

image as a background or a blank field of 2000 ×
2000 m. A background image is typically a satellite
photo of arbitrary size. The environment is three dimen-
sional, displaying both a two-dimensional top-down view
and a three-dimensional view. Various sizes, heights, and
dimensions of square, circular, and rectangular objects
can be placed on the field both before and during a
simulation. Survivors can also be placed on the field at
specific locations and/or distributed randomly. Deploy-
ment locations for rescue workers can be placed as rect-
angular areas on the field. The aerial robots are displayed
as circles with spinning bars in their centers, whereas the
obstacles are red objects in the two-dimensional view and
yellow objects in the three-dimensional view. Survivors
are shown as red dots on the field, turning yellow and fi-
nally green based on their states of discovery. Sensor range
displays can be toggled on and off from the simulator’s
user interface.
DroneLab allows the inclusion of one or many robots

equipped with simulated sensors and equipment and
supports the addition of pluggable behavior modules
written in the Java programming language. It includes a
physics engine that allows specification of speeds, accel-
eration rates, and various other physical properties, and
provides collision checking and gravity. DroneLab allows
the acceleration of time and the addition of obstacles
“on-the-fly” to create a dynamic virtual environment.

Fig. 8 Survivor distribution patterns. Gray boxes are buildings, red dots are survivors. From left to right: random, congregated, mixed

Fig. 9 Satellite photo of the town of Arahama taken on March 12, 2011 (Geospatial Information Authority of Japan 2011). Left is full photo, and
right is sample of 300 m2 sub-section built in DroneLab environment builder showing red buildings and red dot survivors. The large buildings in
the upper left corner of the right photo are the ruins of the Sendai Arahama Elementary School, a primary evacuation site during the tsunami.
Photograph by GSI of Japan (Geospatial Information Authority of Japan 2011)
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Figures 11 and 12 show the results of the simulation
when applied to swarms of UAVs using the parameters
presented in Table 2. The percentage of survivors seen
over time by the IR camera, referred to as camera cover-
age, was chosen as the measure to display, as its range
can be generalized to many other sensors. Each UAV’s
simulated camera’s detection radius was limited to 15 m
as a way to account for environmental conditions such
as darkness, fog, rain, snow, and debris. The camera
coverage percentage shown in the vertical axis of the
figures is a measure of the number of total survivors
detected by the camera of any UAV divided by the total
number of survivors in the simulation, the ratio of
detected to undetected survivors by the swarm as a
whole. Survivor distributions use the mixed method de-
scribed previously in Fig. 8. Three hundred fifty survi-
vors were congregated on and around likely evacuation
sites (Editorial Office of the Ishinomaki Kahoku 2014)
and 300 were scattered randomly across the disaster

area, for a total of 650 survivors. According to sources
from Arahama (Editorial Office of the Ishinomaki
Kahoku 2014) (Sato 2015) (A. E. S. M. Staff Member
2017), the number 650 is roughly equal to the popula-
tion of the local area at the time of the tsunami. The
time axis shows simply the hours, minutes, and seconds
since the UAV swarm was deployed.
Figures 11 and 12 show that in all of these results, every

situation resulted in the achievement of 90% or more
camera coverage in under 2 h. Swarms of 10 or 20 UAVs
using the standard or spiral method were consistently able
to discover 90% or more of simulated survivors in less
than an hour. Left running for 4 h, swarms of 10 or more
UAVs consistently achieved a 98% or 99% location rate as
they re-ran their routes in flocking formation. Similar al-
gorithm differences were observed when the UAVs were
equipped with simulated 5-m-ranged FINDER sensor in-
stead of the camera, though discovery times generally in-
creased by 30–50% with the shorter-ranged sensor.
These results are significant as they show that there is

the potential to spot 90% of visible survivors of a disas-
ter situation, even in hazardous, non-drivable, or inun-
dated areas, in under an hour with little operator
intervention using the proposed technique. This is well
within the 24-h time limit suggested as optimal for dis-
aster response (Editorial Office of the Ishinomaki
Kahoku 2014) (Bartels et al. n.d.), even when the poten-
tial multi-hour mobilization times for manned rescue
teams are factored in. These results almost certainly rep-
resent a significant improvement over existing methods.
Actual data regarding the time it takes rescue workers to
thoroughly search an equivalent area using existing
methods without the use of UAVs varies by situation and
is difficult to quantify. However, available evidence
suggests that it can take days to search the most signifi-
cantly affected areas (Editorial Office of the Ishinomaki
Kahoku 2014).

Fig. 10 Left is northwest corner of satellite photo in Fig. 9, and right is the same area after build-out using DroneLab environment builder. Buildings
shown as red rectangles and survivors as red dots. Photograph by GSI of Japan (Geospatial Information Authority of Japan 2011)

Fig. 11 Average percentage of survivors found over time, referred
to as camera coverage, by a swarm of five UAVs across six simulation
runs. Scatter method was the slowest and spiral method the fastest to
reach the goal of 90%. The jump in coverage just after 43 min occurs
when the swarm encounters an evacuation center such as a school in
which many survivors are co-located
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Additionally, there are many situations in which
long-term search and rescue efforts are necessary and
difficult to sustain by manned personnel (American Red
Cross 2015). At times, survivors are discovered days or
even weeks after the initial disaster strike. In these situa-
tions, swarms of UAVs may continue operating and
searching with little human interaction needed to
achieve a high degree of sensor coverage over a short
period of time. A swarm of 10 UAVs using the spiral
method on average was able to achieve 98.9% camera
coverage in under 90 min. This rate slowly grows over
time due to the unpredictable nature of the swarm pat-
terns. Each time the pattern is re-flown, the positions of
each UAV differ due to responsive flocking behavior.
This element of randomness improved long-term search
results and could be leveraged to a higher degree in a
non-simulated system.
Despite these results, it is important to acknowledge

that in order for this data to be useful at present, a hu-
man rescue worker would necessarily view and process
the data so that survivors could actually be rescued. The
swarms of UAVs simulated in this research are not
intended to perform actual rescues, although such ef-
forts are possible (Erdelj et al. 2017) (American Red
Cross 2015). Therefore, this research acts as an initial
step to demonstrate what lies within the realm of the
possible using a behavior-based UAV swarming approach
to disaster search and rescue. The research also provides
suggestions for initial algorithms and search methods
that have proven effective in simulation.

Areas of improvement
Despite the positive outcome evident in the simulation re-
sults, one persistent cause of delay across all scenarios was
the battery recharge behavior. The flattening discovery

rates in each simulation run are often caused when UAVs
run out of batteries around the 20–25 min time-frame
and return to the deployment location for a recharge. This
happens repeatedly as batteries discharge, sometimes re-
quiring a UAV to fly across the entire area to return to the
charging station. Intelligent recharging to handle this be-
havior could improve results of the algorithms further.
For example, future iterations of the search algorithms
could integrate battery recharge into their designs, poten-
tially triggering an auto-charge when a UAV flies within a
certain distance of its recharge station while its battery life
is below a certain threshold.

Applications
This section provides a sample of practical applications
for which this research can be leveraged, as well as brief
guidance on how to apply the research to actual situa-
tions. Although some aspects of this research are experi-
mental, such as the simulated miniaturized FINDER
sensor, other aspects, such as the use of a UAV swarm
equipped with Wi-Fi and IR cameras, are readily usable
today.

Deployment
At present, the recommended deployment configuration
is 5 or 10 commercially available UAVs with parameters
as good as or better than those specified in Table 2. Each
UAV should be equipped with an infrared (IR) camera
and loaded with the software used in this research. Add-
itional work would be necessary to be done to pull data
from the real, rather than simulated, IR cameras and
other sensors.
To accept the data feeds from the UAV swarm, a

ground station and/or mobile application could be de-
veloped. This application could be designed in many dif-
ferent ways, but the basics could include a top-down
graphical map, photo, or blank image of the search en-
vironment with a built-in customizable distance scale
such as the one used in the DroneLab simulation soft-
ware. As survivors are located, the operator or operators
could tap the screen to indicate their locations. At
present, the recognition of humans from camera feeds is
a challenging research problem in and of itself. Thus,
the rescue personnel could view the data feeds of the
various UAVs and mark locations on a shared map. The
combination of cooperative UAV swarm, mobile applica-
tion, and input from rescue personnel would form a vi-
able mode of operation using technology available today.

Types of disasters
The approach described in this research is well suited to
earthquake and tsunami disasters, as well as any destruc-
tive natural or man-made disasters in which environ-
mental or political conditions present difficulty in the

Fig. 12 Average camera coverage rates of swarms of five, 10, and
20 UAVs for all three methods shown in parallel. ST is standard, SP
is spiral, and SC is scatter. Scatter method with five UAVs was the
slowest and spiral method with 20 UAVs the fastest to reach the
90% coverage goal
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deployment of rescue vehicles or personnel. These situa-
tions include the presence of significant or hazardous
debris, inundated terrain, and/or dangerous or hostile
conditions. Due to limits in UAV communication range
and battery life, the cooperative behavior is optimized
over a 2-km2 area. Thus, the approach is particularly
well suited to environments in which the presence of
undiscovered survivors within a particular area is
strongly suspected—for example, within cities, towns,
villages, or other populated areas.

Civil/defense applications
In addition to civilian search and rescue, this research
also has a number of applications that could apply to
both the civil and defense sectors. With much detail
omitted, the following are a list of potential applications
in which the use of swarms of autonomous cooperating
UAVs such as those simulated in this research could be
highly valuable:

� Intelligence gathering
� Combat search and rescue
� Smart object location acquisition
� Incoming threat detection
� Site assessment and map-building
� Counter-UAS and counter-swarming

Ethical considerations
A number of ethical considerations surround the use of
humanitarian robotics. One such consideration is the
fact that swarming algorithms and autonomous robotic
systems in general are inherently dual-use. These sys-
tems can often be used for civilian or military purposes.
Although this research focuses on the use of UAV
swarms for humanitarian disaster relief and the defense
applications outlined above do not specifically recom-
mend weaponization of this research or technology, such
an outcome is possible.
The use of fully autonomous systems in weapons sys-

tems opens the potential for a new type of risk. When
implemented on weapons platforms, autonomous sys-
tems can select and attack targets in ways that are faster
and different than those performed by humans. Due to
the potential for unintended collateral damage caused by
these systems, the United States Department of Defense
does not permit lethal fully autonomous weapons sys-
tems at this time (Human Rights Watch 2013). All
weapons that include artificial intelligence must also in-
clude a human supervisor, or “human-in-the-loop,” for
decision-making (US Department of Defense 2012).
In addition to its dual-use nature, other ethical con-

cerns are inherent to humanitarian robotics research.
Any time a machine is empowered with the ability to
make or influence decisions that affect peoples’ lives,

ethics becomes an important factor in system develop-
ment and deployment (Sandvik et al. 2014). When de-
signing a system based on this research, these factors
should be among those considered as part of a compre-
hensive systemic ethics policy.

� If an autonomous robot swarm is used to detect and
report the locations of survivors, what issues might
cause bias in reporting? Computer algorithms are
developed by humans and cannot be said to be
entirely free of bias and politics (Sandvik et al. 2014).
Different algorithms, test cases, or detection
equipment could create bias in the detection and
reporting process.

� Certain people or types of people may be reported
over others. For example, automated face recognition
techniques tend to be more effective on certain ethnic
groups (Sharkey 2018). If such techniques are used by
the swarm system to detect survivors, there is likely to
be detection bias.

� As a behavior-based approach creating emergent
intelligence, how might ethics be examined
differently in the case of this research than it
would be in a centrally controlled system?

� Do behavior-based artificial intelligence systems fall
under the same sets of considerations as centrally
controlled systems?

Another valid ethical concern in humanitarian robot-
ics is the issue of neutrality. Neutrality can be compro-
mised if UAVs are perceived—even if incorrectly—to be
linked to a military or political power that has a stake in
a humanitarian crisis (Emery 2016). Engagement with
the local community is one way to approach this con-
cern. However, with regard to the research described in
this article, the UAVs used for this research are commer-
cial or custom quadcopters commonly used by drone
hobbyists. These UAV models are not likely to cause
tension or misperception as might repurposed military
UAVs.
Perceptions of the ethical issues surrounding UAVs

also differ in different parts of the world. For example,
in Europe and North America, concerns about the use
of UAVs tend to include invasion of privacy, misuse by
government or law enforcement, and fears of an aviation
disaster. However, concerns in the Tana Delta of Kenya,
where humanitarian drones were field tested, revolved
around practical concerns such as the strength of the
UAV’s camera, how far the system could operate, how
quickly the drones could be deployed in an emergency,
and who would be in physical possession of the system
(Boyd 2014). Given this knowledge, it is important to
consider the concerns of the local communities with re-
gard to humanitarian drones, rather than to superimpose
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the concerns of aid-providing nations in the mistaken
assumption that the concerns are identical.

Conclusion
The results of the study appear to greatly improve the
availability of situational awareness data in the first few
hours after a major natural disaster, which is widely con-
sidered one of the most critical SAR areas in need of im-
provement (Editorial Office of the Ishinomaki Kahoku
2014) (Erdelj et al. 2017) (Tait Communications 2012)
(Bartels et al. n.d.) (Ochoa and Santos 2015) (Shimanski
2005) (Adams et al. 2007) (Riley and Endsley 2004).
Simulation data generated during the study show that a
swarm of just five standard6 UAVs executing the spiral
method of cooperative, behavior-based search and rescue
developed in this research can consistently achieve a
98.8% 15-m radius sensor coverage after 4 h, reaching a
goal coverage rate of 90% in 90 min. This same swarm
of five UAVs consistently achieves a 92.5% 5-m radius
sensor coverage rate in 4 h, reaching the 90% goal in
3 h. As more robots are added, the numbers improve
even more. A 10-UAV swarm averages 98.9% standard
sensor coverage after 4 h and reaches a 90% coverage in
only 53 min. Equipped the precise 5-m radius sensor, 10
UAVs reach 96.9% coverage after 4 h, reaching the goal
90% in 108 min.
In many simulations, a swarm of 20 UAVs using the

spiral method reached the 90% goal in less than 34 min,
slightly over half an hour to discover 90% of all visible
survivors within a 2-km2 area littered with waterlogged
fields, damaged structures, fallen trees, and overturned
piles of cars.
The spiral method is likely the quickest because it re-

acts more effectively to groups of survivors. The spiral
method discovers clusters of survivors more quickly
than the other methods through its spiral behavior mod-
ule, which spirals outwards from an area in which more
than a certain number of survivors are detected. If differ-
ent types of data were sought after, a different set of be-
haviors might prove more effective.
Given the strong results of the simulations performed as

part of this research, this approach to post-disaster assess-
ment appears promising. Of course, in a real-world situ-
ation, the usage and availability of the data discovered by
the UAVs is key. Also, although these simulations were de-
signed to model a real environment with some degree of
accuracy, the performance will certainly differ in an actual
situation. However, this research does show that the use
of swarms of UAVs with these algorithms has the potential
to make a large amount of critical data available for con-
sumption by rescue workers or other systems of interest.
This research demonstrates the potential for high value in
the area of disaster data acquisition using swarms of au-
tonomous UAVs.

Endnotes
1Standard parameters such as those of the commercially

available DJI Phantom 4 quadcopter or similar model.
2Standard sensor coverage for this research is consid-

ered to be a 15-m radius detection range.
3The UK’s ORCHID Project seeks to create a disaster

response system using a swarm of UAVs at a cost of
around $2000 each (Kube and Zhang 1992).

4A Finding Individuals for Disaster and Emergency Re-
sponse (FINDER) sensor is a sensor developed by the
US National Aeronautics and Space Administration
(NASA) to aid in disaster search and rescue. A FINDER
sensor uses low-power microwaves to detect the heart-
beats of buried disaster survivors up to 9 m into a
mound of rubble. It has been used to successfully locate
survivors in Nepal. A FINDER sensor is currently the
size of a carry-on bag and is thus not appropriate for
carry by a standard quadcopter. However, simulating
how a future miniaturized version of this sensor, or
others like it, might perform alongside a standard visual
or infrared camera provides an interesting comparison
for the purposes of this research.

5The DroneLab simulation software, as well as the
UAV controlling software, may be available upon request
to the (Institution omitted for blind paper submission)
or through request to the paper’s author. At the time of
this writing, the software is not public domain.

6Standard parameters such as those of the commercially
available DJI Phantom 4 quadcopter or similar model.
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